Script Files
- Part 11 -

by Ted Roche

In the last article, I discussed some of the basics of
working with script files. For those of you who missed
that issue, let me summarize a few key points here. A
script is a text file of AmigaDOS commands performed by

- the EXECUTE command which can function without op-
“erator intervention. Script files are great for automating
'some of the drud&;egy of working with AmigaDOS by
letting you work through the grammar and syntax of a
series of commands only once and then calling them back
as needed. Script files can be run from an icon using
Workbench 1.3’s ICONX program, or from a CLI/Shell by
using the EXECUTE command. This article examines
some of the special commands available only within
script files.

Using ED

One frustrating experience I found with Workbench 1.3
was that the ED text editor wipes out the Script protection
bit when it edits a text file. I worked out the following
script file, called SE, saved in the S: subdirectory, and
called up by typing SE <filename>

key filename

; SE - Script Edit

if "<filename>" eq
echo "ERROR: must specify filename."

skip END

endif

ed <filename>

protect <filename> +s

lab END

This script illustrates a few features of scripts that I
have not previously covered. The first line uses a “dot”
command, which allows a script file to be called with
parameters specified on the command line. This lets you

My Word Micro Enterprises
110 Quincy Avenue
Braintree, MA 02184
(617)848-3490

C V4

S TN

DeskTop Publishing — Consultation — Training
Conputer-Aided Instruction & Presentation
AMIGA Software Development

Robert Pat Ryan Mary C. Ryan

PAGE 20

specify a filename, for example, or a device name. Dot
commands have a number of remarkable capabilities, and
I plan to devote an entire future article to them.

The second line contains a remark - a non-executable
line of text which lets you put in comments, explanations
of “tricky” code, or a credit line. While not required, re-
marks can be a big help in debugging or in trying to un-
derstand someone else’s (or your own!) programming
techniques. All text following a semicolon is treated as a
remark; EXECUTE will ignore the remainder of the line.

The third through sixth lines of code are an IF ... ENDIF
structure. The IF command is followed by a condition to
be tested, in this case, whether the filename required by
this script file has been specified or is a null string ("). If
no file was specified, the next line is executed, otherwise,
all code is skipped until the ENDIF statement is reached.
The IF . . . ENDIF commands will also recognize an ELSE
option, for alternate courses of action:

IF (condition) (do one set of actions)
ELSE

(do another set)
ENDIF

The ECHO command prints text in the CLI/Shell from
which the script was called. In this case, the text informs
the operator that a filename must be specified. The SKIP
command tells EXECUTE to skip all command lines until
it comes across a LABel named END. In this file, SKIP
causes EXECUTE to jump to the last command in the file.
Note that the ECHO and SKIP commands are indented to
make it easier for the reader to follow the flow of logic
within the program.

Assuming a file has been specified, the script calls ED,
the Workbench 1.3 text editor, specifying the filename to
be edited. When editing is complete, control is returned to
the script file, which resets the Script protection bit for the
file. Voila! A simple solution to a minor bug.

A Script Text File Viewer

Another small aggravation with AmigaDOS comes
when using the TYPE command to display a file on the
screen. If the file is over 25 lines in length, it just zips by,
right off the top of the screen. Using Workbench 1.3"s
MORE program to read the file fixes that, but the delays
while each page loads from disk can be maddeningly
long. One solution is to use a “buffer” to hold the upcom-
ing portion of the text file. The S:PTYPE script listed be-
low is called by typing PTYPE <filename>

KEY filename/a

; Ptype - Type a file to a PIPE: and display using MORE
if exists <filename>

AMIGA CULTURE -JANUARY/FEBRUARY 1990



run type >pipe:ptype<$$> <filename>

run sys:utilities/more pipe:ptype<$$>
else

echo "ERROR: File <filename> does not exist."
endif

Again, a dot command specifies the KEYword re-
quired. The /a option after the keyword tells EXECUTE
that this keyword must be supplied. If I forget, and just
type “PTYPE” and hit return, the message ‘EXECUTE: Pa-
rameters unsuitable for key “Filename/a” ’ is displayed,
. reminding me to add the filename, although perhaps the
error message is not as clear as in our earlier example.
~ The third line starts an IF . . . ELSE . . . ENDIF struc-

ture that extends to the end of the script file. IF EXISTS
tests for the existence of the file specified; if found, the
lines following the IF statement are performed. If the file
can’t be found, the ECHO line following the ELSE is per-
formed instead.

The fourth line starts the new task of running the TYPE
command. The output of the TYPE command (the text
file) is directed to one of Workbench 1.3’s new devices,
PIPE:. This device allows you to “pipe” information from
one task to another. The name used after PIPE: identifies
this particular pipe, so that other tasks may access the

ipe. I named this pipe as <$$> -- the <§$> is a
g;& symbol recognli)zeps bypl?)%FCUTE, and it will suggt?:
tute the number of the CLI/Shell that the script was called
from. If your CLI/Shell prompt says “2>” then the pipe
you create will be named PTYPE2. This lets you have mul-
tiple CLI’s each using the PTYPE command without con-
fusion.

Now that we’ve started sending our file out into who-
knows-where, let’s go get it. The fifth line uses RUN to
start the MORE program running in its own full-sized
window, rather than in the current CLI, which may be a
much smaller window. With RUN, control is returned to
the original (calling) CLI/Shell, so that you can flip back
and forth to the CLI and use other AmigaDOS commands
while the text file is being displayed.

I hope I've shown you some of the potential of script
files. If you have comments, suggestions, or want to con-
tribute a script file of your own, please drop a note to me
in care of the Amiga Culture editor.

Ted Roche is co-owner of Computer Resource, a New Hamp-
shire-based consulting firm specializing in training on Amiga
software and hardware applications. Copyright 1989 by Ted
Roche. All Rights Reserved.



