A comprehensive monthly guide for users of FoxBASE+® and FoxPro® February 1993

By Ted Roche

any developers have created routines to
M allow the operator multiple choices from a
predefined list. For example, Sherri
Kennamer created FLDLIST.SCX (found in the
FoxPro\Goodies\ Screens directory) to return a list of
database fields. Y. Alan Griver’s CodeBook
demonstrates a more generic dialog in a program
called MOVER.PRG. [FoxTalk will soon bring you a
powerful MOVER:-style diglog by John Hosier—Ed.]
CHEKLIST.PRG was designed with these goals:

* Unlike the MOVER programs, it uses very little
screen space on the main entry screen.

e The code and functionality are minimized to create
a reusable “black box” routine that uses a small
amount of code, disk space, and memory.

e The checklist visual appearance creates a familiar
interface for the operator.

FoxPro 2’s interface has greatly simplified the design of
complex screen objects. You can use a list object within
a generated screen to create a multiple-selection
checklist. It is a tribute to both the power and the
simplicity of FoxPro’s Power Tools that the creation of
the CHEKLIST.PRG required only about 30 lines of
code to be custom written (Figure 1).

The remainder of the commands are created
automatically by the Screen Generator from objects
designed in the Screen Builder, and can easily be
maintained using that interface as well.

CHEKLIST() Multi-selection List o
Ted Roche

BT Al S et o el B e el o M e 2
Lisa C, Slater

PROPERizing Proper Names Properlycooeee.. 7
Sue Cunningham

Adding and Eliminating Extra Lines in Reports9
WLE. Speights, 7.

A Disk Space Display for the Rest of Usccccocvceunene 13
Bob Nielsen

PACKING in Placecooiiiiiienriiccsiiesnes 17
Joseph Gotthelf

Microsoft Fox Developer Relations Programs 19
Dauvid T. Anderson

Modifying GENXTAB.........ccono e eisesinisreacsenninnne 22
Eric Freedus

‘m > iragram Sindow Rud |
R: B8C: B "Hove 1
by daubh u1)ak:n§ruﬂh MOUEE Ton %ﬂl:ﬁ.{f]’ Cleanup =
[ttt b
§§u]';<hlllnsllnf.temn 11,1,2,"

els
: 1 It [1n]tent 1
’.u;??fa sttt tanio, 11,1,2,"

dif

s)m- get_1nltenHo
i turn

EN.I}E ORButton

- I
L —nCOPY(hIhm LaOri gfirray)
!ﬂl

CHEKLIST Set: EDIRE ToglAll
SSECTION 1 A ﬁnsalecl = l . B ALL
Pa»aneter la0righrray && array of

< A1l > {(Hone }
< Ok » (Cancel}

_} i lcStuff = spl:l(E)
PRWQ E ALL L. 1= endif
ncon(lam-ignrray laltems) &% wake a for 1 =1 to ﬁLEHt}altem 13
f edit] save the umuﬂ ©if la tens
) I..IN(];] tms,2) = @ Iallens
ane= dlnenslonal array ml‘ftla lns[\ 11,1,2;1c5tu
litn?:(ﬁiﬂ(lalteﬁ 13,13 &k end)f

3 - !
endif sfnu get InltenHo
g0k = “0k* k& declare as a
character field

Command

clear
set digplay to vgaldl
modi screen ?

.Figure 1. Screen Builder with all CHEKLIST's snippets open and

arranged. _
Continues on page 3

#

Pinnacle Publishing, Inc.

@ FoxTalk is printed on post-consumer recycled paper

Pinnacle Publishing, Inc.

FoxTalk 7

LIST()

Continued from page 1

In “A One-line Pushbutton Pop-up” (FoxTalk, October
1992), Hank Fay described his design criteria for black
box routines. His thought-provoking list presents a
standard against which all generic routines should be
measured for functionality, speed, independence, and
ease of use.

CHEKLIST supplies the necessary functionality to
create its window, process actions against the checklist
items, and clean up after itself. Since CHEKLIST
processes only one external parameter through a
private duplicate of the list, its speed is the same as if it
were a dedicated, hard-coded routine. CHEKLIST
ensures independence from the surrounding
application through the use of PRIVATE variables and
the preservation and restoration of environment
settings that need to be explictly set within CHEKLIST.

Finally, CHEKLIST requires only one parameter,
allowing the developer to create the array to be passed
to CHEKLIST appropriately.

Creating an array for the list

Before calling the CHEKLIST program, you must
create the character array of choices and then process
the array to preselect or disable items. An array can be
created, using DECLARE/DIMENSION statements,
and then filled programmatically. Alteratively, the
new SQL - SELECT command can create, dimension,
and fill the array from a database in a single statement.

Let’s say we have a database GROUPS.DBE, which
contains GroupKey, a 10-character field with our
checklist options. To create an array, laChoices,
containing the list of all the GroupKeys in alphabetical
order, use the statement:

SELECT Groups.GroupKey
FROM Groups ;
ORDER by Groups.GroupKey :
INTO ARRAY laChoices

This is a relatively simple use of an SQL - SELECT
statement. A more complex application can create the
array and complete much of the processing described
below. Using advanced techniques would depend on
the developer’s need for speed in the final product
versus the more challenging coding and debugging
required to create them. More complex SQL - SELECTs
are described in the box on page 6.

At this point, we’ve created an array, by using
either a SELECT command or DIMENSION and
STORE commands, and we need to process it.
Processing the array before passing it to CHEKLIST
requires us to perform some minor tasks:

e Make room for the checkmarks

e “Check off” any items that should be already
selected

* Optionally, disable one or more items

To display an item as “checked off,” precede it with a
checkmark (v - ASCII 251) and a space. If an element
should not be selected, precede it with two blank
spaces. If there are elements you want to display in
the array but not to allow the operator to select or
deselect, their first character should be a backslash (\),
followed by a check and a space or two spaces, as
appropriate. FoxPro automatically disables options
starting with a backslash, showing them in a different
color, and preventing them from being selected.

Invoking CHEKLIST

CHEKLIST can be used in several ways. It can be
called as a user-defined function (UDF) within a
screen by creating a radio button with the appropriate
prompt and defining the VALID clause as an
expression CHEKLIST(@ArrayName), where
“ArrayName” is your predefined array. Notice the @
symbol, which tells FoxPro to pass the variable by
reference. This allows CHEKLIST to operate directly
on the array that was passed as a parameter. If you
omit the symbol, only the first value of the array will
be passed (parameters are passed to UDFs by value as
the default) as a character string, and the CHEKLIST
function will fail when it attempts to perform array
functions on a character string (see the FoxHelp topic
on SET UDFPARMS for a detailed explanation).
CHEKLIST can also be invoked within code this way:

do CHEKLIST with ArrayName

Notice in this case that the @ symbol is not used.

Figure 2 shows you how the CHEKLIST dialog
looks when called from another screen. This example
is available in the source code as SAMPLE.APP/PJX,
but if you just want to see what it does, you can call
CHEKLIST as follows: :

DECLARE 1aChoices[5]
laChoices[1] = "\ Peanut Butter & Jslly"
laChoices[2] = "y Pizza"
laChoices[3] = " Chinsse"
laChoices[4] = " Soda"
laChoices[5] = "v Beer"
ACTIVATE SCREEN

? "Before:"

DISPLAY MEMORY LIKE laChoices
=CHEKLIST(@laChoices)

? "After:" :
DISPLAY MEMORY LIKE laChoices

Continues

February 1993

3

P FoxTalk

Pinnacle Publishing, Inc.

= Prople Mame and Add Editing
Nane John Smith
fddress 123 Main St.
City Anyuhere Choose one or more
State NE by doubhle—clicking with mouse
Zip 17345 or spacebar:
< Add/Drop Groups » <Do Beta Test
4 Di tor
4 Executive
4 Grounds
IThP
¥mas cards

< All > (Hone >

< 0k > <(Cancel>

Figure 2. CHEKLIST working with sample data.

When the CHEKLIST function is called, it will display a .

modal dialog to the operator, with items selected,
deselected, and disabled as you have initialized them in
the array. The operator selects checklist options by
double-clicking on them or double-spacing on the
keyboard. The operator can also access the <All> or
<None> buttons to toggle all the options (except those
disabled) by clicking on the buttons with the mouse or
tabbing to them and pressing <Enter> on the keyboard.
If <Cancel> is selected, the original array is returned to
the calling program. If <OK> is chosen instead, all
changes made by the operator are returned in the array.
The developer can then review array elements, taking
the actions indicated by the operator’s choices.

How CHEKLIST works

CHEKLIST.PRG is generated directly from a screen
(CHEKLIST.SCX) designed with the Screen Builder.
You can MODIFY SCREEN CHEKLIST in the Screen
Builder, using source code files that accompany this
article. The Screen Layout options selected define the
screen as a Window of Type... Dialog. Select Program
Generate from the menu and specify the PRG
extension in the GENERATE modal dialog; otherwise
you won't be able to use CHEKLIST as a UDF. Select
code options to [X] Define and [X] Release Windows,
[X] Read Cycle and [X] Modal. Screen snippets required
are a Setup dlause, a LIST object, an All/None pair of
pushbuttons, an OK/CANCEL pushbutton pair, and a
set of procedures stored in the Cleanup/
PROCEDURES section. The Setup code is:

#SECTION 1

Parameter laQrigArray & array of items

#SECTION 2 * Make a copy to edit; save the original

private all like 1*

=ACOPY(1a0rigArray, laltems)

if ALEN(laltems, 2) = O
dimension ;
laltems(ALEN(laltems,1),1) && make it a two-dimensional array

endif

leOk = "Ok"

& ona-dimensional array

&& declare as a character field

The #SECTION 1 command is a Screen Generator
Directive (a Screen Builder preprocessor command)
that causes all commands following it (until the end of
the snippet or a #SECTION 2 command) to appear at
the beginning of the generated code.

Since FoxPro requires that a PARAMETERS
command appear as the first executable line of a
program, the #SECTION command allows us to move
the Setup code from its usual position after the window
definition commands. Although the #SECTION 2
command is not required in this case, it is good practice
for the Setup clause commands to appear in the normal
sequence of the generated code. You may need to
depend on that later.

The PRIVATE ALL LIKE L* command ensures that
variables used in CHEKLIST will not change the values
of identically named variables in calling routines, but
rather hide such variables and create a new one for this
routine only. The “L*” specifies only those variables
beginning with the letter L, which is the standard
adhered to in this program for “I.”ocal variables. Why
not just use PRIVATE ALL and not worry about what
the variables are called? PRIVATE ALL should be
avoided because of its effect on system variables.
System variables (starting with an underscore
character) that have not been defined before this
routine would be created as Private variables and
released upon exiting. That could lead to erratic system
behavior.

In the next line, the ACOPY function makes a
duplicate array for the List element. Working on a
duplicate allows you to return the original array to the
calling routine unchanged until the operator commits
to the changes.

The next three lines, containing the I[E..ENDIF
structure, handle the situation where CHEKLIST is
passed a single-subscripted array as a parameter. One-
and two-dimensional arrays exhibit different behavior,
particularly when it comes to referring to specific
elements. Instead of coding for the exceptional case of a
one-dimensional array, convert a one-dimensional
array to a two-dimensional array containing one
column. A handy feature of ACOPY() converts one-
column two-dimensional arrays back to one-
dimensional arrays automatically when the modified
array returns in the Cleanup.

Select the list object by picking the List... option
from the Screen Builder menu or by pressing <Ctrl-L>.
List objects can work with lists from many sources:
arrays, popups, database structures, database field
values, or directory lists. In CHEKLIST, the list is
supplied by the array laltems, the ACOPY() of the array
passed to the routine as a parameter. When an item is
double-clicked or double-spacebarred, the list’s VALID
clause calls the routine Toglltem() to toggle the checklist

February 1993

Pinnacle Publishing, Inc.

FoxTalk &

item on or off. Toglltem() is in the Cleanup/
PROCEDURES section:

FUNCTION Toglltem
it laltems[1nItemNo, 11="y "
laltems[InItemNo, 1] = ;
stutf(laltems{1nItemNo,11,1,2," "}
alse
laltems[InItemNo, 1] = ;
stuff(laltems[InltemNo,11,1,2,"Y ")
endif
show get LnltemNo
return .T.

The IE...ENDIF structure toggles the element between
selected and deselected. The SHOW GET command
immediately updates display of the list element. If this
command were omitted, the check would not appear
on the item toggled until the operator moved to
another item.

The All/None pair of pushbuttons (created using
the menu option Screen/Pushbutton or <Ctrl-H>)
toggles all checklist items on or off by calling the
routine ToglAll(). ToglAll() is also located in the
Cleanup/PROCEDURES section:

PROCEDURE ToglAll

if InSelect = 1 &% All
IeStutf ="y *

else
leStuff = space(2)

endif

for i = 1 to ALEN(laltems, 1)
it laltems[i, 1] # "\"

laltems[i, 1] = stuff(laltems[i, 1],1,2, leStuft)

endif

next

show get 1nltemNo

Because the value of the pushbutton was not
predefined, the return value, InSelect, is numeric. The
Screen Builder adds a “DEFAULT 1” clause to the
generated @...GET code for the pushbutton. This
prevents an error if the variable has not been created
before the GET statement. However, a pushbutton
with a numeric return value can be more difficult to
maintain. The @...GET works fine, but if you change
the order of the two pushbutton prompts in the Screen
Builder pushbutton dialog, the VALID clause will
reverse: <All> will now select none, and <None>, all!

The OK/Cancel pushbutton, on the other hand,
had a value predefined in the SETUP clause, 1cOK =
“Ok,” which will make the return value a character
string. A character return value makes the code easier
to understand and avoids the problem altogether.

Be careful! Although you no longer have to worry
about the order of prompts, you must not change the
text of prompts without making matching changes to
the code that processes the return values. The VALID
clause OKButton() is run when this terminating

pushbutton is selected. OKButton() is also in the
Cleanup/PROCEDURES code:

PROCEDURE OKButton

if leOk = "Ok" && Ok, return the changes
=ACOPY(laltems, lalrigArray)

sndif

return

Coding conventions

The VALID clauses for the List, All/None, and Ok/
Cancel pushbuttons are defined within their Screen
Builder dialogs as (*) Expressions and given names
(Toglltem(), ToglAlI(), OKButton()). This avoids
unpronounceable names the Screen Generator assigns
to snippets and makes the program easier to follow.

There is some inconsistency in the use of
FUNCTIONS versus PROCEDURES in the Cleanup
code. The first returns a logical True, the second has
no return clause at all, and the third just returns, with
no return value. What's best? If we asked a dozen
developers, we’d get a dozen answers. Code snippets
return a .T. value by default, so a return is not
required. Many developers adopt a convention where
a function returns a value, as the built-in square-root
function does. A procedure performs a series of
commands. Choose one and stick with it.

Enhancing CHEKLISTY()

There is nothing special about using the checkmark
character. Just make sure it is changed wherever it
appears in the code, or enhance CHEKLIST by
substituting a memory variable wherever the
checkmark appears in the code. With a memory
variable, only a single line of code would have to be
changed. If you use CHEKLIST with FoxPro for
Windows, a CASE structure testing the system
variables _DOS and _WINDOWS would allow a
different character in each version. This is particularly
important if you use checklist with a font other than
the default FoxFont. Most Windows fonts will not
support the same upper set of symbols (CHR(128)
through CHR(255)). See Figure 3 for an unmodified
use of CHEKLIST under FoxPro for Windows. This
example uses the simple snippet suggested above to
create the data and call the function. Notice the
disabled element at the top of the list and its match in
the top array element (with backslash) displayed
behind the window. The list elements behind the
window do not display the check mark properly
because the screen font, unlike the window fontin the
unmodified CHEKLIST, didn't happen to be FoxFont.

Continues

February 1993

P FoxTalk

Pinnacle Publishing, Inc.

L
File Edit Datab Hecord Program Rup Window Help
Before:
LACHOICES Priv A eimple
1] C "y Peanut Buticr 2 Jelly”

I 2 C " Pizza"

- C " Chinese"

[4 C " Soda"

I 9 € " Beer

Pranul l\ullrr ﬁ Jrlly
I Plzzs
Chinsgs

Figure 3. CHEKLIST, under FoxPro for Windows.

The List object will work with either single- or
doubled-subscripted arrays. List will only display the

first column of elements, so the options must be in the

first column of a multicolumn array. Using a two-

column array would allow a second column to hold

the original value of the first, perhaps as a logical

value. That way, you could process only items

changed by the operator within CHEKLIST—a big

difference in the time to process very large lists.
Other enhancements:

* Passing a title as a parameter

e Passing a logical parameter to control the “All/
None” pushbutton display

e Varying the window and popup size with the
length of the array prompt

In this example, designed to use minimal code, the
operator must double-click options on or off. You could
add ON KEY LABEL statements to redefine keys that
operate on a single mouseclick or spacebar.

CHEKLIST.PRG easily integrates a multiple
selection checklist into your applications by adding a
single UDF call in the VALID clause of a button. Itisa
generic, reusable object, a “black box” handy when a
multiple-choice list must be made from an array of
items where <All> or <None> options are appropriate.
The items might be a fields list for a scope argument on
a REPORT FORM or SCAN, a list of cities, or a grocery
list. Reusing the same code in multiple places in an
application reduces the amount of code to maintain,
lowers overall application size, and creates a simpler,
consistent interface.

Ted Roche is a senior programmer for The New Hampshire Insurance
Group in Manchester, N.H. In six years of analysis, design, and
programming, he has completed projects in FoxPro, dBASE, and Clipper
for clients in the manufacturing, state-regulatory, and financial-services
industries. Ted is exploring full-time employment or long-term
contracting in central and southern New Hampshire. He can be reached at
603/746-4017, or on Compu Serve at 76400,2503. C%

More Advanced SQL Usage

Asshown cmpage3 asmgIeSQL statement can a‘eate the array
and preformat it with appropriate checkmarks, spaces, and
‘backslashes. If no eiemenis were selected or disabled:

SELECT space(2)+Groups. erszy :
FROM Groups ;
ORER by 1 ; :
INTQ ARRAY laChoices

wold create the laChoices array, each element preceded by two

 Butlet's say a second table, Gmphst contains records of :
people and lists they belong on. The people are designated witha
10-character field, PeopleKey, and the groups with a 10-character
field, GroupKey. The following commands create the array and
pre%clect items already selected for "SMITH(I)OO =

USE gruplist OFDER TAG erpﬁsy
SET FILTER T0 PeopleKey=="SHITHOO0G1 " : §
IIF{saekaroups GmupKay "GHPLIST“} "f spaca[E_}} =
+ Groups.GroupKey ; =
FROM Groups ;
CFDER by Groups GroupKey :
~ INTO ARRAY 1&03101{:93

i asingle SQL statement :

- _'$LHJT"J "-)GRGPS%PKEY E‘:P(IPSW{EY

"%yasemndodmmmemndwnple?

their “natural” order. Buta checkmark prece
the second example. It alphabetically sorted, the ch
- _emnes wvould begrauped‘togeﬂ)eraﬂbe end 'ftheﬁr@i__

: one-colmm array the s

- method might havea perfom‘taneeadvmtage ; '
: op&mlzahmﬁemuseltmpureSQLDesPﬂezts gth. only
~one line of code (notice the semicolo

o opmandﬂlatanemptyselec;amabe
notmpleteqo}uhon& e

INTD Amﬂ‘f Iaca'maes

‘used the ORDER BY GROUPKEY dause to

‘These code snippets may require that GRUPLISTD,

February 1993

