
Using ssh in a mixed OS environment 

SSH, the Secure Shell, is available as a native tool and often bundled with distributions of
many UNIX-like operating systems, including Linux and Mac OS X, and can be grafted
on top of Windows operating systems. The primary function of ssh is to establish a secure
and encrypted tunnel between two machines. This tunnel can allow machines to connect
through open public networks without disclosing the information contained within the
tunnel.

Using the ssh tunnel, additional services can be rerouted through the tunnel. Most ssh
implementations include SCP, the secure copy program, and may include additional tools
for the generation of keys, which can allow for automated batch connections (rather than
interactive sessions that require a password). In addition, services on any port can be
redirected through the tunnel.

SSH requires that software be running at both ends of the connection: an ssh server runs
on one machine, and ssh client software runs on the other. The connection is initiated by
client. 

Linux Servers
The SSH daemon, sshd, can be installed from all Linux distributions. Installation and
configuration vary with the distribution. A good white paper on basic install is available
at http://www.hentzenwerke.com/wp/remoteaccessviassh.htm.A great deal more
information, including source code, documentation and pointers to many more resources,
can be found at http://www.openssh.org. 

Windows Servers
Serving ssh on Windows machines is generally not recommended, as Windows machine
security is more problematic. However, an ssh server is available as part of the CygWin
set of tools for a POSIX interfaces atop Windows. See http://www.cygwin.com/

Windows Clients
Windows client tools: http://www.openssh.org/windows.html
PuTTY is great for a simple terminal, and will also let you set up and save complex
settings for items like port forwarded. Free.
WinSCP is a great graphical tool for SCP (secure file copy) with a two-pane interface to
copy or move files to and from remote machines.

Operation
On Linux/OS X machines, issue a command like:

ssh -p2233 yourname@example.com

to attempt to log onto the example.com server as user 'yourname' via port 2233 (It's
generally a good practice to change the default port 22 configuration for ssh, just to avoid



the most basic of automated scripts).

ssh -p2222 -L 9999:192.168.1.99:10000 yourname@example.com

uses the same login as before, but also redirects to the local port 9999 the traffic that
would normally be seen on port 10000 of the remote host machine at IP address
192.168.1.99 – note that this may or may not be the ssh server at example.com, but may
in fact be relaying something from another machine in example.com's local area network.
This example forwards port 10000, often the WebMin server (http://www.webmin.com)
so that it can be accessed remotely and securely by the ssh client machine at
http://localhost:9999. Figure 1 illustrates a similar configuration using the Windows
client PuTTY.
 

Figure 1: Sample PuTTY configuration with three ports forwarded to local machine. Textboxes are filled in
to show how the first entry was created.

To start an ssh session using PuTTY, start the Putty executable, and specify the IP
address or friendly name (example.com) of the server and the port it is running on, and
select “Open.” If this is a server you plan to regularly connect to, you can use the “Load”
and “Save” functions to preserve your settings. Note the the settings are stored to the
Registry for the current user, but do not include login information. See Figure 2 for a
typical basic login screen.



Figure 2: Loading a previously saved configuration, these settings will connection to a host named
'neresus' on port 22 using ssh.

Copyright © 2005 by Ted Roche. This work is licensed under the Creative Commons
Attribution-NonCommercial-ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/ or send a letter to:

Creative Commons
559 Nathan Abbott Way
Stanford, California 94305, USA.


